FC2ブログ
2013年01月17日 (木) | Edit |
今回はバスレフ型およびバスレフ型に-12dB/Octのフィルタを組み合わせた場合の位相特性について考えます。最後にいつものシミュレーションと比較する事により、僕の考え方が正しいかどうかを検証してみます。

下はバスレフ型の模式図です。
p3_20130117043119.jpg
バスレフ型では、ヘルムホルツ共鳴周波数(縦の青破線、図では40Hz)を挟んで2つのインピーダンスピークが発生します。密閉型と同様に各ピークを中心として位相が±90° (1ピークあたり計180°)回転します。このため、各ピークにおける遅れは、下側が90°、上側が270°となり、全部で360°位相が回転します。2つのピークの中間に位置するヘルムホルツ共鳴周波数での位相は180°遅れます。バスレフ型の場合、密閉型に比べて位相が遅れるだけでなく、2つのピークの間(50Hz前後)という狭い周波数範囲で位相が180°回転します。

下はバスレフ型に-12dB/Octのローパスフィルタを組み合わせた場合の模式図です。
p4 copy
一般的な2Wayバスレフ型のウーハーに相当します。位相は全部で540°(180°x3)回転する事がわかります。フィルタ カットオフ周波数での遅れは450°です。カットオフが十分に高ければ、下限周波数(例えば40Hz)における遅れ量には殆ど影響しないと思われます。つまり、高い周波数での位相の回転は気にせず下限周波数の時間的遅れだけを問題にするのであれば、アナログフィルタでも別に構わないと言えるかもしれません。ただし、後で書きますが、サブウーハのように極端にクロスオーバー周波数が低い場合にはモロに影響するため注意が必要です。

上図をシミュレーション結果と比較してみます。

下はAlpair 6P + TONO箱(約7L)を想定した結果です。
P0.jpg
模式図の条件とは異なり、バスレフの共鳴周波数は50Hz、ローパスのカットオフは3kHzです。折り返しを展開した位相曲線を明るい緑で示しています。2本のピンクの水平線は、上が位相0°(遅れナシ)、下が-540°(540°遅れ)です。シミュレーションでも全部で540°回転していますね。

各周波数における位相を読み取ると、下側のインピーダンスピーク(1番左の赤縦線:約38Hz)では-90°、ヘルムホルツ共鳴周波数(左から2番目の青縦線: 約50Hz)では-180°、上側のピーク(80Hz)では-270°、フィルタのカットオフ周波数(1番右の赤縦線: 3kHz)では-450°となり、上の模式図とよく一致しています。また、アナログフィルタのカットオフ周波数は十分に高いため、下限周波数における遅れには影響していません。カットオフ周波数(3kHz)で450°遅れますが、時間に換算すると約0.4msですから、一般的に言われる人間の時間分解能(20~30ms)に比べれば非常に僅かです。

最後に極端な例として、アドオン式サブウーハを想定して、フィルタのカットオフを70Hzまで下げてみました。
p6.jpg
50Hzの位相は-180°からさらに-90°回転して-270°になりました。また、100Hzで-450°まで急激に位相が変化しています。サブウーハのように極端に低いカットオフ周波数を使う場合は、明らかにデジタルフィルタの方が有利であると言えます。特にバスレフ型のサブウーハでは位相が大きく変化するため、この問題は密閉型よりも深刻となります。

次回は、実測値と照らし合わせて見たいと思います。

お役に立てたらクリックしてください。ランキングに参加してます にほんブログ村ランキング参加中
関連記事
テーマ:オーディオ
ジャンル:趣味・実用
トラックバック
この記事のトラックバックURL
この記事へのトラックバック