FC2ブログ
2013年06月29日 (土) | Edit |
今回はポート音だけを分離して波形を観測しました。

実験君セットアップです。
_1000332_20130629082108.jpg
TONO君をZAP君の隣に置き、ZAP君にはTONO君とは逆相の信号を入力します。すると2つの振動板からは互いに逆相の音が発生し、両者から等距離のマイクロフォン位置では2つの音が互いに打ち消し合あうため、ポートからの音だけをマイクでピックアップできるはずです。これはヘッドフォン等のノイズキャンセレーション機能と同じ原理です。

そんなにウマイ事行くんでしょうか?
それがウマイ事行くんですよ。
F特ポート copy
緑はこの方法で計測したポート音のF特です。黒はポート直前に置いたマイクで計測した特性です。よく一致していますね。

下はそのようにして計測した60Hz(概ねヘルムホルツ共振周波数)の波形です。
説明1
ピンクはTONOポート塞ぎ(振動板音のみ) + ZAP密閉(逆相の振動板音)の合成音波形です。TONOのポートは塞いだ状態ですから、振動板の音どうしが見事に打ち消し合って合成音の振幅は非常に微小です。作戦大成功!ってヤツですね。

はTONOバスレフ状態(振動板音+ポート音) + ZAP密閉(逆相振動板)の合成音波形です。振動板からの音は打ち消し合うので、マイクはほぼポートの音だけを拾っているはずです。

はTONOポート塞ぎ(密閉)、はTONOバスレフの音です。これらは逆相ZAPを使わずに計測した通常のTONO密閉型とTONOバスレフ型の波形です。

赤(バスレフ)の音は、青(振動板)緑(ポート)の音が合成された音である事が分かります。

信号波形(白)に対してポート音(緑)の位相が進んでいるように見えます。しかし、入力に対して出力の事象が時間的に進む事は有り得ません。実は、このポート波形の山(+)は、信号の1つ前の谷(-)に対する反転かつ遅延した応答です。
説明2
振動板音(青)の山は信号の山(白)から約45°遅れており、ポート音(緑)の山は1つ前の信号の谷(反転した山を紫で表示)から約135°遅れています。波形の位相は進んでいるかのように見えますが、入力の事象に対する出力の応答事象は遅れて発生します。アーヤヤコシイ。。

これは、正弦波信号が突然始まる際の過渡挙動を見るとよく分かります。
1発目の正弦波の山に対する応答波形だけを抜き出してみました。
1発
信号に「山」が突然発生すると、先に振動板(青)から音波の「山」が発生し、かなり遅れてポート(緑)から音波の「谷」が発生しています。バスレフ型では、我々はその合成音を聞かされているという事です。

このようにバスレフ型システムは遅れ(位相)も極性も異なる2つの音の合成音を発生するため、過渡挙動は非常に複雑となります。定常正弦波信号はとても綺麗に再生できても、過渡信号の再生波形は大きく崩れます。時間ドメイン的にはかなり出鱈目だという事です。そして、再三申しているように、音楽信号は一時たりとも留まらぬ激しい過渡現象の嵐です。

次回は、他の周波数での挙動を調べてみます。

お役に立てたらクリックしてください。ランキングに参加してます にほんブログ村ランキング参加中
関連記事
スポンサーサイト



テーマ:オーディオ
ジャンル:趣味・実用
2012年10月08日 (月) | Edit |
お約束通り、再生音の付帯的現象に関するデータをご紹介します。

音の付帯的現象に問題の多いバスレフ型を題材とし、下記の内容で2回にわけて書く予定です。
1回目: 箱内部の定在波とポート自体の共振音の影響と吸音材の効果
2回目: バスレフ型における応答の遅れ

いずれもTONO君(Alpair 6P、7L)を使って一連の計測を行いました。現象をシンプルにするために、ポートは前面のスピーカのすぐ近に配置しました。

おなじみのシミュレーションです。
シミュレーション
約60Hzを同調点としました。

約30cm前方での実測値です。吸音材は一切入れていません。
20cm F特
青が密閉、赤がバスレフです。相変わらず計算とよく一致しています。50Hzで-6dB程度ですから10~13cmウーハを使った市販の小型2Wayクラスに相当します。バスレフ効果は同調点(60Hz)で7~8dB程度です。なお、4~5kHzの盛り上がりはドライバ固有の特性です。

緑は密閉型をベリンガのグライコでブーストした特性です(63Hzバンドを約+7dB)。以前にも書きましたが、密閉型をトーンコントローラ等でチョイト6dB程度ブーストするだけでも、ロールオフ周波数をバスレフ型並に下げる事ができ、しかもバスレフ型よりもなだらかな減衰特性が得られます。

図中の黄色の帯は、ポート自体の最初の(基本モードの)共振領域を表しています。上のシミュレーションの「ポート出力」曲線(青)の最初のポート共振領域(約800Hzから約2.5kHz)に対応します(実際の周波数は、シミュレーションよりもやや低めです)。詳しくは後で説明します。2本の赤の縦線は箱の定在波の周波数です。低い方は箱の前後と左右壁(ほぼ同じ)、高い方は上下壁による定在波に対応します。

それでは詳細なデータをご覧ください。

1. ポートからの音
まず、どのような現象が起こっているのかを、ポート前方3cmの位置で計測したデータで見てみましょう。
a)吸音材なし
ポート吸音材なし
黄色が最初のポート共振領域です(ディップからディップ、シミュレーションよりもやや低め)。この領域に箱の定在波のピーク(赤の2本の縦線)が重なっています。

b)吸音材を3面にはる
ポート吸音材3枚
最小限の吸音措置として、吸音材(ミクロンウール)を3面にだけはりました。この状態では、肝心のバスレフ効果はほとんど低下しませんでした。データを見ると、定在波の急峻なピーク/ディップが明らかに減少してる事がわかります。しかし、最も面積の広い上下壁の定在波の影響はまだ残っているようにも見えます。また、ポート共振領域(黄色領域)の盛り上がりは残ったままです。

C)ポート塞ぎ/吸音材たっぷり
ポート吸音材たっぷり
マイクロフォンはポート前方3cm位置ですが、ポートを粘土で完全に塞いでいます。従って振動板だけの音です。上の2つのグラフには振動板からの音も多少含まれています。

2. 振動板からの音
今度は振動板の前方約3cmにマイクロフォンを置きました。
a)密閉/吸音材なし
振動板 吸音材なし密閉
b)バスレフ/吸音材なし
振動板吸音材なし
c)バスレフ/吸音材3面
振動板吸音材3枚
d)密閉/吸音材たっぷり
振動板吸音材たっぷり

振動板前面では、密閉もバスレフも付帯音の大きさはあまり変わらないように見えます。また、吸音材を3面にはると定在波のピークが明らかに減少します。それでも、前後/左右の定在波の影響はわずかに観測できます(左側の赤線)。上下壁面の定在波(右側の赤線)がほとんど観測されないのは何故でしょうか??ポート音では、吸音材を3面にはっても上下の定在波はしつこく残ったように見えたのとは対照的です。ポチ箱とも傾向が異なるため、とりあえず謎のまま保留。

3. 両方の音の計測
今度は、マイクロフォンを少し離して、振動板+ポートの音を計測しました。マイクロフォンはスピーカのセンターではなく、ポート側に少しオフセットしています(両方の音をほぼ均等に拾うため)。最初にお見せしたF特グラフではプロットがギザギザ過ぎてみにくいため、約15cmの距離で計測しています。
a)密閉/吸音材なし
吸音材なし密閉
b)バスレフ/吸音材なし
吸音材なし
C)バスレフ/吸音材3面
吸音材3枚
d)密閉/吸音材たっぷり
吸音材タップシ

ポート共振による比較的広い周波数領域の盛り上がりと、内部定在波による比較的鋭いピークから成る付帯音成分がはっきりと現れています。上の振動板直前で測定した結果とは異なり、吸音材なしの密閉型とバスレフ型を比べると、バスレフ型の方が付帯音成分が明らかに大きい事がわかります。これは密閉型には皆無であるポートの共振音が発生するのと、ポートから箱内部の定在波を含む音が放出されるためであると考えられます。吸音材を3面にはると、定在波のピークはそれなりに減少しますが、ポート共振による盛り上がりはそれほど改善されません。吸音材たっぷりの密閉型では、そのような鋭いピークや盛り上がりがほぼ平坦になっている事がわかります。1.3kHz近辺の凹みは原因不明ですが、部屋の影響ではないかと思われます。

4. 考察
今回の計測データは以上です。

このように、バスレフ型ではポート自体の共振音が生じる事と、穴からボックス内部の音が漏れる事により、密閉型に比べるとどうしても付帯音が多くなります。定在波は吸音材を使って容易に低減できますが、バスレフ型の場合、肝心の共鳴効果を十分に確保するために吸音材は最小限に留めたいところです。そう考えると、バスレフ型では、箱形状の工夫による定在波の低減が非常に効果的ではないかと思います。対して、密閉型であれば、直方体の箱であっても、吸音材を大量に充填する事により、定在波の影響をほぼ完全に抑える事ができます。

肝心のバスレフ共鳴効果を得るには、ポートは必ず筒として働く必要があるため、ポート自体の共振音を抑制する根本的な方法は無いでしょう。なぜならば筒としての特質が無くなれば、肝心の共鳴効果も無くなってしまうからです。

また、今回のように、ポートの最初の共振領域と定在波が重なってしまうのも良くないかもしれません。箱の寸法は、容積が決まれば、見た目のバランスもあるため、それほど極端にプロポーションを変える事はできないでしょう。しかし、共鳴周波数を変えずにポートを「太く/長く」するか「短く/細く」する事により、ポートの共振周波数を移動する事は可能です。ただし、太く/長くすると、下図のようにポート共振の音がより盛大に出てしまうため、注意が必要です。

シミュレーション2
同調周波数を約60Hzに維持したまま、ポートを極端に太く長くしました。この場合、ポートの共振周波数を低周波側へ移動できますが、共振音のレベルが上がってしまいます。

逆に細く/短くすると共振音のレベルを下げる事ができますが、風切り音に注意が必要でしょう。。と考えれば、結局それほど選択の自由度はないかもしれません。箱の形状を工夫して定在波を極力抑えた上で、風切り音が問題にならない範囲でポートをできるだけ細く短くするというのが最良の手かもしれません。また、設置条件によっては、背面ポートにした方が耳に届くポートからの付帯音を低減できるかもしれません。ただし、背面ポートの場合、設置場所によって低域の特性が変化しやすいといった問題を抱えます。ちょっとした家具の上等に気軽に設置する事はできぬでしょう。本来、コンパクトなスピーカほど、設置自由度は高くあるべきだと思います。

なお、ウーハーのローパスフィルタのカットオフが十分に低く(たとえば100Hz以下)かつ十分に急峻であるために、ウーハーの出力帯域が箱定在波周波数にもポート共振周波数にも重ならない場合、以上のような付帯音問題は基本的に解消されます(起振源がなくなる)。従って、僕が常々提唱しているように、密閉型小径フルレンジ(あるいはワイドレンジツイータ)を基本とし、そのロールオフ領域だけを別のウーハーに受け持たせる場合、バスレフ型であっても付帯音的な問題は深刻ではなくなるでしょう。しかし一般的な市販大型マルチウェイの場合、38cmウーハーでも700~800Hzでクロスオーバし、当然箱のサイズも相応に大きい(すなわち定在波周波数は相応に低い)ため、定在波問題を逃れる事はできないでしょう。

バスレフ型は、このような付帯音以外に、応答の遅れが生じるという問題を抱えています。次回は、そのような問題によって生じる現象について、計測データを交えながら考察を加えたいと思います。オッタノシミニ!

お役に立てたらクリックしてください。ランキングに参加してます にほんブログ村ランキング参加中
テーマ:オーディオ
ジャンル:趣味・実用
2012年10月05日 (金) | Edit |
今回は、主にスピーカによる付帯的な音の現象について書いてみます。

僕は「音質」をシューチューして聞き分けるのではなく「音質」なんか気にせずに「音楽」を聴いている時に「気に障る」(違和感を覚える、不自然に感じる、不快に感じる、聞こえ難く感じる)現象を重視します。「オンシツ」を聞き分けたり「ツイキュー」したりするのが目的ではなく「音楽」を快適に聴けるようにする事が目的だからです。「オンシツ」を「シューチュー」して聞き分けている時の聴き方と、「オンシツ」なんか全く気にしないで「聞く」という意識が遠のいて無意識に「音楽」を追いかけて楽しんでいる時の聴き方は基本的に全く異なるように思えます。だいたいライブで聴いている時にナンチャラカンたらテーイたらクーキカンなんざ気にしないですよね。それと同じです。当初、この点がわからず、無駄な試行錯誤をたくさんしてしまいました。

そのように「音楽」を聴いている時に気に障った現象をコツコツと潰してきた結果が現在のZAPシステムです。「気に障る成分」とは、大雑把に言って「ソースには含まれていない余分な音成分」または「ソースとは異なる(ソースから歪んでいる)音成分」です。それらの成分が過剰に含まれていると「音楽」が聴き辛くなるという事です。考えてみれば当然の事です。ソースに記録されている「内容」を楽しもうとした場合、ソースとは異なる成分は端的に言って「ノイズ」だからです。

僕が「付帯音」と言う時、それは主に前者「ソースには含まれていない余分な成分」の事を指します。これには、箱内部の定在波が振動板の前面に透過(伝播)してくる音、箱の表面振動によって放射される音、箱の振動が床や机に伝わって放射される音、バスレフポートの筒自体の共振音、ポートから漏れる内部定在波の音が含まれます。特に、定在波やポートの共振音等、一定周波数の付帯的音成分は長く聴いていると、凄く気になりだします。

例えば、吸音材を入れないと、「音楽」を聴いているうちに、特にピアノソナタで、一定周波数の「コーーーー」という地下鉄で聞こえるようなというかなんというか、気に触る音の癖が耳につき始めます。これはハチマル用語で「箱臭い音」と呼びます。

もう1つの「ソースから歪んでいる音成分」には、主にスピーカの出力特性のロールオフによる低音不足、部屋の定在波による主に低音部の周波数特性の乱れ(ピーク/ディップ)、バスレフポートによる恐らく過渡応答的な波形の乱れが含まれます。前回の記事で書いた位相の遅延による影響も後者に含まれますが、少なくとも僕のフルレンジ+密閉型システムにおいてはそれほどクリティカルであるとは思えません。

例えば、僕はジャズを聴く時、常に半ば無意識にピチカートベースの音を追いかけますが、バスレフ型でずっと聞いていると不自然さが気に障りだして結局穴を塞いでしまいます。また、交響曲の低音部で時々遅れて聞こえるようなボーといういつも同じ音程の変な音が気になりだします。

上記のような現象は、僕の場合、いずれも短時間のシチョー(試聴)ではあまり気になりません。

「気に障る成分」を2つに分類しましたが、これらは結局「ソースの信号波形にソコソコ近い音を耳に届けられれば「音楽」は聴きやすくなる」に帰結します。マニア達がツイキューするいわゆる「良い音?」になるのではありません。そこに記録されている「音楽」が自然な音で聴きやすくなる、そこに記録されている「音楽」の全体と細部をより楽に聴き取れる感じ取れる楽しめるようになるという事です。

そのようにして現在までに施した具体的な対策を以下にざっと上げてみます
○ ニアフィールドリスニング(部屋の影響の低減)
○ 密閉型(低音のたぶん単純な遅延ではなく動的挙動の改善、付帯音の低減)
○ 吸音材たっぷり(付帯音の低減、恐らく低音の動的挙動の改善)
○ 箱のアホみたいな補強(そこまで必要かは不明、たぶんヤリスギ)
○ DSPやアナログイコライザによる低音ブースト
○ 密閉型パワードサブウーハによる低音補強
○ DSPやアナロググライコによる特性のフラット化、ピーク/ディップの緩和
○ スピーカをデスクトップに置かずに窓枠に固定
○ 左右SP間距離を縮めるまたはモノラル化(おそらく左右間の干渉の低減)

これらの対策のおかげで、最近は音楽を聴いていて気に障るところも無くなったためネタ切れ状態です。低ビットレートのラジオを聴くために真空管アンプを復活させた事くらいでしょうか。。。。TONO君用のTU-870をオークションでお安く落札しました。結局これが一番安上がりですね。

真空管アンプを使うという事は、歪みを付加している事になるわけですが、これはあまり気になりません。恐らく箱の定在波やポートの共振音とは異なり特定周波数だけに発生する共振現象ではないからだと思われます。楽曲によっては聴きにくく感じる事もありますが、低ビットレートのラジオを聴くにはとても効果的なような気がします。

次回は、付帯音に関連する計測データをいくつかご紹介できれば。。。と思います。キガムケバ。。。

お役に立てたらクリックしてください。ランキングに参加してます にほんブログ村ランキング参加中
テーマ:オーディオ
ジャンル:趣味・実用
2011年04月07日 (木) | Edit |
という事で、Alpair6 Pはオーソドックスなバスレフボックスで使用してみたいと考えています。

例の「スピーカー設計プログラム アプレット版」で検討したところ、6Pでは概ね7~9Lくらいで約50Hzまでフラットな素直な特性が得られそうです(6Mの場合は5 L前後の小さめの箱で同等の低音特性が得られる、関連記事)。以前購入したVictorのパワードサブウーハーの箱がちょうど8 Lくらいなので、こいつを実験用に利用しようと考えています。ちなみに、このサブウーハーが内蔵していたアンプは現在ケロ用に使用しています。

で、容積が決まったので、今回はポートの径と長さについて検討してみます。

同じヘルムホルツ共鳴周波数が得られるポート径/長さの組み合わせは無数に存在します。箱容積と共鳴周波数を一定とした場合、細くすると短くする必要があり、逆に太くすると長くする必要があります。

容積を8L、共鳴周波数を約53Hzに合わせて、3種類のポート仕様について計算してみました。

ケース1: 内径=4cm x 長さ=12cm
ケース2: 内径=2.8cm x 長さ=4.5cm
ケース3: 内径=2cm x 長さ=1.5cm

ケース1: 内径=4cm x 長さ=12cm
717.jpg

ケース2: 内径=2.8cm x 長さ=4.5cm
716.jpg

ケース3: 内径=2cm x 長さ=1.5cm
715.jpg

3つとも共鳴周波数がほぼ同じなので、得られる周波数特性もほぼ同じです。このシミュレーションは空気抵抗の影響を考慮していないのかもしれません。ポートが細くなると流速が上がって空気抵抗も大きくなるので、共鳴周波数が同じでも実際の出力に影響が出るかもしれませんのでご注意。。。。

さて、ここで注目すべきは、ポートから出てくる音の特性です(グラフの緑の線)。太くて長いケース1では、約1kHzにポート(筒っぽ)自体の共振ピークが発生し、そこから高域側に倍数周波数のピークが発生しています。この1発目のピークは、ポートを短く細くするにつれて高周波側へ移動し、そのレベルも低下します(ケース1では1kHz/67dBに対してケース3では4.5kH/36dB)。

このように、同じチューニング周波数でも、ポートを細く短くする事によって、ポート自体が発生する筒っぽ臭い音を抑える事ができます。また、バスレフ型の場合、十分な共鳴効果を得るには吸音材を最小限にせざるを得ず、箱内の定在波の音もポートから放射されるため、その意味でもポート径は小さめの方が有利かもしれません。

ただし、ポート径を小さくすると流速が上がるため、空気抵抗と風切り音の影響が無視できなくなる可能性があります。また、過渡特性にも悪影響が生じる可能性もあります。これは実際に使用する時の音量にも影響を受けます(音量が大きいとポートを出入りする空気の量が増える → 流速も上がる)。例えばドライバの限界近い大音量で聴く場合には、あまり小径にはできないかもしれません。しかし、控えめの音量でしか聴かない場合には、ポートをかなり小径にしても大丈夫かもしれません。市販製品の場合、当然限界近い音量での再生も想定してポートを選定せざるを得ませんが、自作の場合は自分の音量に見合ったチューニングが可能です。

という事で、近々バスレフのスタディを始めますのでオタノシミニ。。。

追記
この場合もそうだけど、最大音量をどこに見積もるかによって装置の設計は大きく影響を受けますね。たとえば馬鹿ブーストにしてもそうです。最大音量を制限する事によって音質面のみならず設計自由度が大きく広がります。そういう意味でもニアフィールドリスニングは極めて有利です。また、デジタル処理によって信号を制御する事により、使用条件を確実にハードウェアの限界以下に制限できるようになれば、ハードウェア側の設計自由度はさらに向上します。それには、信号入力から音響出力(スピーカー)までを含めたトータルなシステムコンセプトが必要なのは言うまでもありません。このようなコンセプトにより、「本質的」な「音楽再生クオリティ」の向上のみならず「コンパクト化」も可能です。まだまだ技術的にやることが一杯あると思うのだが。。。。

追記2
6Mは6Pよりもf0が低いが、6Pと同じ箱に入れて低域が伸びるのではなく、6Pよりも小さい箱で同等の低域特性が得られると考えた方が良さそうだね。

お役に立てたらクリックしてください。ランキングに参加してますにほんブログ村
テーマ:オーディオ
ジャンル:趣味・実用